Wednesday, December 15, 2010

Identifying Special Situations in Factoring

Difference of two squares
-a2- b= (a + b)(a - b)

Trinomial perfect squares
--a+ 2ab + b2= (a + b)(a + b) or (a + b)2
--a- 2ab + b= (a - b)(a - b) or (a - b)2

Difference of two cubes
--a3 - b3
3 - cube root 'em
2 - square 'em
1 - multiply and change

Sum of two cubes
--a3 + b3 
3 - cube root 'em
2 - square 'em
1 - multiply and change

Binomial expansion
--(a + b)3 
--(a + b)4
 

Naming Polynomials and End Behaviors

Linear Equations:
y=mx+b (1 degree, 0 turns)
m: slope
b: y-intercept

Domain= x-values
Range= y-values

When m is positive: falls to the left, rises to the right




domain → +∞, range → +∞
domain → -∞, range → -∞








When m is negative: rises to the left, falls to the right





domain → -∞, range → +∞
domain → +∞, range → -∞







Quadratic Equations:
 --Parabolic Equations
y=ax² (2 degree, 1 turn)
(a+b)(c+d)

When a is positive: rises to the left, rises to the right




domain → +∞, range → +∞ (rises on the right)
domain → -∞, range → -∞ (falls on the left)








When a is negative: falls to the left, falls to the right







domain → +∞, range → -∞ 
domain → -∞, range → -∞






***Number of turns is always one less than the degree!

Degree:

0- Constant 
1- Linear
2- Quadratic 
3- Cubic
4- Quartic
5- Quintic 
6 to ∞- nth Degree 

Terms:

Monomial 
Binomial 
Trinomial 
Quadrinomial 
Polynomial

Identifying Quadratic Equations

STANDARD FORM: ax² + bx + cy² + dy + e= 0 

If a is not equal to c and the signs are the same then the equation is an ellipse:









If a or c have different signs then the equation is a hyberbola:











If a or c=0, then the equation is a parabola:











If a=c, then the equation is a circle: